PLAdvanced MISSISISIUS SUBJES

Compositional Impact on Science & Engineering in Atmospheres

Thomas R. Spilker

Jet Propulsion Laboratory

IPPW-5 Short Course: Controlled Entry & Descent into Planetary Atmospheres
Bordeaux, France
June 23, 2007

Organization

- Compositional effects on the atmosphere itself
- Compositional effects on science measurements
- Compositional effects on entry systems
- Compositional effects on descent systems
- Compositional effects on communications

Effects on the Atmosphere

Atmospheric Structure

- Mean molecular mass M is a parameter of fundamental importance
 - Strictly a function of composition
- *Atmospheric density* ρ is proportional to M
 - All aerodynamic drag calculations depend on density: $F_d = (Cd/2) A \rho V^2$
- Scale height H is a function of M
 - Describes the local vertical gradient of pressure or density
 - $P(z) = P(z_0) \exp[-(z z_0)/H]$ ("Isothermal atmosphere")
 - In real atmospheres H can vary from a few km to ~100 km
 - Values of H in the relevant density range are critical to entry trajectory design
- Lapse rate (dT/dz) is important to structure and dynamics (esp. convection)
 - Multiple mechanisms for composition to affect lapse rate
 - Condensation and its latent heat (dry vs. wet adiabats)
 - Opacity to radiant energy
 - Sunlight going downward
 - Thermal emissions going *upward*
 - Greenhouse effect

Effects on Science Measurements

- Chemical aliasing
 - Can bias compositional measurements
 - One species' instrument response behaves like another
 - Instrument response can be misinterpreted, or...
 - One species' signal overwhelms the other's
 - Example: CO and N₂ in a low- to med-resolution mass spectrometer

Condensation

- Liquids or fine solids in instrument systems
 - Interfere with moving parts
 - Sampling systems
 - Example: H₂SO₄ droplet plugging inlet to Pioneer Venus Large Probe mass spectrometer
- Clouds, hazes
 - Interfere with imaging, other instruments requiring light propagation
 - Aerodynamics can generate local "clouds"
 - Effect commonly demonstrated above wings of aircraft in humid air
 - Can fool nephelometers

Direct Effects on Entry Systems

- Two heating mechanisms: convective & radiative
 - Air hitting the shock is compressed and heated tremendously; it moves (convects) into contact with the TPS and transfers the heat to the TPS
 - Air heated at the shock radiates at the TPS; the shock radiative spectrum is strongly influenced by composition of the air
 - Ex: Titan's atmosphere is mostly N₂ but also contains CH₄: dissociated N and C form CN, a strong violet-UV radiator
 - Convective/radiative balance is a result of a complex interplay of Mach number and composition
- Two cooling mechanisms: ablative & radiative
 - Ablation: heated TPS material vaporizes and convects away with flowing air, carrying with it stored chemical energy, latent heat of sublimation, and thermal energy of higher temperature
 - Radiation: heated TPS material radiates energy away; but if the shock is strong, it may be opaque and absorb the outgoing radiation, reradiating some of it back at the TPS
- Radiative spectrum and heat deposition depth
 - In an ablative TPS, radiant heating at the surface yields a thermal profile that produces no interior cracking
 - Heat deposited at depth causes higher thermal gradients at depth and cracking (spalling), decreasing TPS effectiveness

Don't forget chemical reactions!

Direct Effects on Descent Systems

- Effectiveness of parachute systems
 - Drag produced per unit area is directly proportional to atmospheric density
- Condensation
 - Polar liquids (ex. water) or solutions (ex. ammonia in water) can coat surfaces
- Corrosion
 - Some atmospheric constituents can be quite corrosive
 - ◆ Example: H₂SO₄ in Venus' atmosphere at altitudes of ~30-70 km
 - Components likely to be sensitive:
 - ◆ Parachute systems: canopy, lines, swivels
 - Exposed fine wires
 - Instrument sensors

Effects on Communications

Communications: the Data Relay Problem

- A probe at some level within a planetary atmosphere ...
- ... must send a given volume of data in a given time (thus, at a known data rate) ...
- ... through the intervening atmosphere (and possibly other non-vacuum media) ...
- ... over some distance ...
- ... to a receiving station outside the atmosphere.
- How much does the atmosphere attenuate the data relay radio signal?

Knowing this is critical to designing a successful telecom system!

General Telemetry Systems & Loss Terms

It all boils down to S/N!

Telemetry Rate Estimates

Approximation for a system's maximum data rate:

$$R_D \approx R_o \cdot \left(\frac{\pi}{4c}\right)^2 P_t \left(\frac{fD_tD_r}{r}\right)^2 \prod_i \xi_i$$

• or, equivalently:

$$R_D \approx R_o \cdot \frac{P_t}{16} \frac{G_t D_r^2}{r^2} \prod_i \xi_i$$

P_t: transmitter power

G_t: transmitting antenna *gain*

D_r: receiving aperture diameter

r: distance between antennas

ξ: loss terms (e.g., signal absorption or scattering, antenna losses)

R_o: constant (approximately) of proportionality depending on the receiving system's performance, coding schemes, noise, etc.

Distance r attenuates radio signals through "spherical divergence"

Radio Propagation Effects

Attenuation by Refractive Scattering

- Scattering changes the propagation direction of an EM wave
- Redirection of RF energy away from the antenna beam
- Due mostly to refractive inhomogeneities in atmospheres
 - Gases: Temperature variations, turbulence
 - Liquids: Cloud droplets and local concentrations
 - Solids: Ice cloud particles and local concentrations
- Can also occur in planetary and interplanetary plasmas

Attenuation by Refractive Beam Spreading

- Bending of a refracted ray increases as the angle of incidence increases
 - "Bottom" of an antenna beam bends more than the "top"
 - Beam becomes elongated, spreads the energy over a larger area: attenuation
 - Important only at large zenith angles

Radio Propagation Effects

Attenuation by Absorption

- Characterized by the absorption coefficient α
 - Units of Optical Depths or dB (some logarithmic unit) per unit length
 - Many influences: concentration of absorbers, T, P's of other gases, radio frequency
- Many constituents of planetary atmospheres can absorb RF energy
 - Gases: ammonia, water, hydrogen sulfide, phosphine, sulfuric acid
 - Liquids: water, water-ammonia solutions, sulfuric acid
 - Solids: water, ammonia, NH₄SH
 - Collisional plasmas

- Absorption Spectrum: absorption coefficient vs (radio) frequency
 - Liquids: usually have non-resonant "Debye" spectra
 - Absorption coefficient of a given sample is proportional to f²
 - Polar gases (permanent dipole moment): very complex behavior, especially ammonia
 - Discrete transitions within coupled rotational-vibrational states (and other transitions) generate many absorption lines in the microwave through sub-mm-wave range
 - Pressure broadening increases line widths so they overlap, creating a continuum spectrum
 - Extreme pressure broadening produces a quasi-Debye spectrum, and can broaden powerful IR absorption lines into the RF portion of the spectrum
 - Non-polar gases: Only collision-induced dipole moment, weak Debye spectrum (CO₂, H₂)

Radio Propagation Effects

Attenuation by Absorption in a Gas: Ammonia

Example Opacity Estimate: Jupiter

- Telecom system engineers for JPL's "Team X" designed a probe data relay system for Jupiter deep probes
 - Designed for relay distance of ~200,000 km
 - PERFORMANCE:
 - ◆ It could maintain a data rate of 10 bits/s (minimum supportable) with up to

24.5 dB

of atmospheric attenuation

Question: How deep in Jupiter's atmosphere can it still maintain the link?

Example Opacity Estimate: Jupiter

Example Opacity Estimate: Jupiter

Questions?